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1 Introduction

It is well-known that the dynamics of several physical systems are governed by nonlinear partial
differential equations (NPDEs) and as such have great importance to our contemporary world.
In the past few decades there has been immense prominence in understanding and modeling
nonlinear processes that are governed by NPDEs in many fields of thriving importance such
as nonlinear dynamics, fluids and continuum mechanics, meteorology and climate, astronomy,
oceanography, system theory and control, operations research, to name but a few. Due to its
applications in real-world problems, NPDEs have become one of the most vital areas of research
in the modern era of mathematical research (See for example reference list).

Notwithstanding the significance of obtaining the closed-form solutions of NPDEs, there
is still the formidable problem of determining new methods to invent new closed-form or ap-
proximate solutions. In this regard, researchers have recently established various special meth-
ods for finding closed-form solutions of NPDEs, which include the inverse scattering transform
method (Ablowitz et al., 1991), bifurcation method (Zhang & Khalique, 2018), the simplest
equation method (Kudryashov, 2005), the extended simplest equation method (Kudryashov,
2008), Kudryashov method (Kudryashov, 2012), Hirota method (Hirota, 2004), Bäcklund trans-
formation (Gu, 1990), Darboux transformation (Matveev & Salle, 1991), the homogeneous bal-
ance method (Wang et al., 1996), (G′/G)−expansion method (Wang et al., 2005), Lie symmetry
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method (Ovsiannikov, 1982; Bluman & Kumei, 1989; Olver, 1993; Ibragimov, 1995, 1999) and
so on.

Since the middle of the nineteenth century, Lie symmetry analysis, which was pioneered by
Sophus Lie (1842-1899), the Norwegian mathematician, has demonstrated the fact that it is one
of the most effective and powerful techniques for obtaining closed-form solutions to NPDEs.
See for example (Ovsiannikov, 1982; Bluman & Kumei, 1989; Olver, 1993; Ibragimov, 1995,
1999; Motsepa et al., 2017; Khalique & Adem, 2018; Khalique et al., 2018; Khalique & Moleleki,
2019; Khalique et al., 2019). E. Galois (1811-1832) had used group theory to solve the algebraic
equations and this inspired Lie. He realized that the hotchpotch methods for solving the ordinary
differential equations (ODEs) could be consolidated and so he embarked on a study to solve
differential equations analogous to solving algebraic equations.

Conservation laws play a pivotal role in the investigation of partial differential equations
(PDEs). They provide basic conserved physical quantities, like conservation of angular momen-
tum, conservation of energy, etc. One can make use of conservation laws to identify whether a
PDE is completely integrable. They can also be used in checking the validity of numerical solu-
tion methods. Recently, exact solutions were obtained for some PDEs using conservation laws
(Noether, 1918; Bluman et al., 2010; Leveque, 1992; Ibragimov, 2007; Naz et al., 2008; Sjöberg,
2009; Yasar & Özer, 2011; Sarlet, 2010; Motsepa et al., 2018; Anco, 2017; Khalique & Abdallah,
2020; Bruzón & Gandarias, 2018). The celebrated Noether’s theorem Noether (1918) furnishes
an ingenious and effective way of determining conservation laws. It provides a formula for
determining local conservation laws once a Noether symmetry connected to a Lagrangian is
established for an Euler-Lagrange equation.

The celebrated Korteweg-de Vries (KdV) equation given by

ut − 6uux + uxxx = 0 (1)

is the result of research concerning long waves in shallow water surfaces. Here t and x denote
time and position, respectively and u(x, t) represents the wave surface. It was first introduced
by Boussinesq (1877) and rediscovered in 1895 by Darrigol (2005); De Jager (2006). In Wazwaz
(2017b) the author, using the techniques given in Olver (1977); Zhang et al. (2009); Gurses
(2013), derived several (3+1)-dimensional negative-order KdV equations.

In this paper, we study one such equation, namely, the (3 + 1)-dimensional negative-order
KdV equation, model II, given by

ux + uy − 4utu + 4uzu + 2ux∂
−1
x uz − 2ux∂

−1
x ut + uxxt − uxxz = 0. (2)

The structure of the paper is as follows: In Section 2, we employ the Lie symmetry method
together with Kudryashov method to find closed-form solutions of (2). Thereafter, in Section 3,
we invoke Noether’s theorem and derive its conservation laws. Finally, concluding remarks are
given in Section 4.

2 Exact solutions of (2)

In this section, we determine exact solutions of the (3+1)-dimensional negative-order KdV equa-
tion, model II (2). However, first we get rid of the two integral terms in the equation and obtain
a fourth-order PDE. Using Lie symmetries of this fourth-order PDE, we perform symmetry re-
ductions and transform it into a fourth-order nonlinear ordinary differential equation (ODE).
Firstly, we carry out direct integration of the ODE and obtain exact solutions of (2). Secondly,
we invoke Kudryashov method and compute more exact solutions of (2).
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2.1 Lie symmetries and symmetry reductions

We make use of the transformation

u(x, y, z, t) = vx(x, y, z, t)

and eliminate the integrals appearing in the equation. Then equation (2) becomes

vxx + vxy − 4vxvxt − 2vtvxx + 4vxvxz + 2vxxvz + vxxxt − vxxxz = 0. (3)

Consider the symmetry group of (3) brought about by the vector field

Γ = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂z
+ ξ4

∂

∂t
+ η

∂

∂v
,

where ξi, i = 1, 2, 3, 4 and η depend on variables x, y, z, t and v. Applying the fourth prolongation
pr(4)Γ to equation (3), expanding and splitting on derivatives of v, we obtain an overdetermined
system of twenty two linear homogeneous partial differential equations

ξ1xx = 0, ηxx = 0, ηxy = 0, ξ1xv = 0, ξ4x = 0, ξ3x = 0, ξ2x = 0, ξ2yv = 0,

ξ4v = 0, ξ3v = 0, ξ2v = 0, ξ1v = 0, ηv + ξ1x = 0, ξ1xt − ξ1xz = 0,

4ηx + ξ4y = 0, ξ3y − 4ηx = 0, ξ2t − ξ2z = 0, ξ1t − ξ1z = 0,

2ηxt + ξ1xy − 2ηxz = 0, ξ3t − 2ξ1x + ξ2y − ξ3z = 0,

ξ4t + 2ξ1x − ξ2y − ξ4z = 0, 2ηt + ξ1x − ξ2y + ξ1y − 2ηz = 0.

Solving this system of PDEs one obtains the following nine Lie point symmetries:

Γ1 =F 1(t + z)
∂

∂y
, Γ2 = F 2(t + z)

∂

∂t
, Γ3 = F 3(y, t + z)

∂

∂v
,

Γ4 =F 4(t + z)
∂

∂z
− F 4(t + z)

∂

∂t
, Γ5 = 2F 5(y, t + z)

∂

∂x
+ zF 5

y
∂

∂v
,

Γ6 = 4yF 6(t + z)
∂

∂t
− xF 6(t + z)

∂

∂v
− 4yF 6(t + z)

∂

∂z
,

Γ7 =
{
−2vF 7(t + z) − zF 7(t + z)

} ∂

∂v
+ 2xF 7(t + z)

∂

∂x
+ 4yF 7(t + z)

∂

∂y
,

Γ8 = − zF 8(t + z)
∂

∂v
− 2zF 8(t + z)

∂

∂t
+ 2yF 8(t + z)

∂

∂y
+ 2zF 8(t + z)

∂

∂z
,

Γ9 =
{

2vyF 9(t + z) − xzF 9(t + z) + 3yzF 9(t + z)
} ∂

∂v
+ 4yzF 9(t + z)

∂

∂t
,

− 2xyF 9(t + z)
∂

∂x
− 4y2F 9(t + z)

∂

∂y
− 4yzF 9(t + z)

∂

∂z
.

Taking the functions Fm,m = 1, 2, · · · , 9 to be equal to 1, we obtain the following symmetries
for equation (3):

X1 =
∂

∂y
, X2 =

∂

∂t
, X3 =

∂

∂v
, X4 =

∂

∂z
− ∂

∂t
, X5 =

∂

∂x
,

X6 = −4y
∂

∂z
+ 4y

∂

∂t
− x

∂

∂v
,

X7 = 2x
∂

∂x
+ 4y

∂

∂y
− (2v + z)

∂

∂v
,

X8 = 2y
∂

∂y
+ 2z

∂

∂z
− 2z

∂

∂t
− z

∂

∂v
,

X9 = −2xy
∂

∂x
− 4y2

∂

∂y
− 4yz

∂

∂z
+ 4yz

∂

∂t
+ (2vy − xz + 3yz)

∂

∂v
.

(4)
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Consider the symmetry X = αX1 + X4 + X5, where α is a constant. Using this symmetry X,
we reduce (3) to a PDE with one less independent variable, that is, three independent variables.
The associated Lagrange system for X, on solving, gives the four invariants

f = αx− y, g = αz − y, h = αt + y, θ = v. (5)

We now treat θ as a new dependent variable and f , g and h as new independent variables. The
equation (3) then reduces to

αθff − θff − α3θfffg + 4α2θfθfg + 2α2θffθg − θfg

+ α3θfffh − 4α2θfθfh − 2α2θffθh + θfh = 0. (6)

We now use the Lie symmetries of (6) and reduce it to a PDE in two independent variables.
Equation (6) has

R1 =
∂

∂g
, R2 =

∂

∂f
, R3 =

∂

∂h
− ∂

∂g
R4 =

∂

∂θ

as its symmetries. The symmetry R = βR2 + R3, where β is a constant, will reduce (6) to a
PDE in two independent variables. Solving the associated Lagrange system for R, yields the
three invariants

r = f + βg, s = f − βh, ϕ = θ. (7)

We now treat ϕ as new dependent variable and r and s as new independent variables. Doing
this, the PDE (6) reduces to

α3βϕrrrr − 6α2βϕrϕrr − αϕrr + βϕrr + 4α3βϕrsss + 6α3βϕrrss + 4α3βϕrrrs

− 12α2βϕsϕrs − 12α2βϕrϕrs − 6α2βϕrrϕs − 2αϕrs + 2βϕrs + 2ϕrs + ϕrr

+
(
1 − α + β − 6α2βϕr − 6α2βϕs

)
ϕss + α3βϕssss = 0, (8)

which is PDE in two independent variables. Equation (8) has four Lie symmetries

Γ1 =
∂

∂ϕ
, Γ2 =

∂

∂s
, Γ3 =

∂

∂r
,

Γ4 =
1

α− β − 1

(
αr − βr − r + 3α2βϕ

) ∂

∂ϕ
− 3α2βr

α− β − 1

∂

∂r
.

The symmetry Γ = γΓ2 + Γ3 provides two invariants ζ = ϕ and p = r − γs. These invariants
transform (8) into a nonlinear ODE

aζ ′′′′ − bζ ′ζ ′′ + cζ ′′ = 0, (9)

where a = α3β
(
γ4 − 4γ3 + 6γ2 − 4γ + 1

)
, b = 6α2β

(
1 − 3γ + 3γ2 − γ3

)
,

c = (1 − α + β) (γ − 1)2 and p = αβγt + α(1 − γ)x + (β + 1)(γ − 1)y + αβz.

2.2 Solution of (2) using direct integration

In this subsection, we derive a solution of the (3+1)-dimensional negative-order KdV equation,
model II (2) by direct integration of the ODE (9). Twice integration of (9) with respect to p
gives

1

2
a(ζ ′′)2 − 1

6
b(ζ ′)3 +

1

2
c(ζ ′)2 + C1ζ

′ + C2 = 0 (10)
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with C1, C2 constants. Letting φ = ζ ′, equation (10) becomes

φ′2 =
b

3a
φ3 − c

a
φ2 − 2C1

a
φ− 2C2

a
. (11)

Assume that r1, r2 and r3 are roots of

φ3 − 3c

b
φ2 − 6C1

b
φ− 6C2

b
= 0

with r1 ≥ r2 ≥ r3. Equation (11) now becomes

φ′2 =
b

3a
(φ− r1)(φ− r2)(φ− r3)

and its solution can be written in the form of Jacobi elliptic function (Kudryashov, 2004;
Abramowitz & Stegun, 1972; Motsepa & Khalique, 2018)

φ(p) = r2 + (r1 − r2)cn2

{√
b(r1 − r3)

12a
p,R2

}
, R2 =

r1 − r2
r1 − r3

, (12)

where cn is the elliptic cosine function. Integrating equation (12) with respect to p and returning
to original variables, we accomplish the solution of (3) as

v(x, y, z, t) =

√
12a (r1 − r2)

2

b(r1 − r3)R8

{
EllipticE

[
sn

(√
b(r1 − r3)

12a
p,R2

)
, R2

]}

+

{
r2 − (r1 − r2)

1 −R4

R4

}
p + K,

with p = αβγt+α(1−γ)x+(β+1)(γ−1)y+αβz, K a constant and EllipticE[q, k] the incomplete
elliptic integral given by (Abramowitz & Stegun, 1972)

EllipticE[q, k] =

∫ q

0

√
1 − k2s2

1 − s2
ds.

The solution of (2) is then given by differentiating v with respect to x. Thus,

u =α(1 − γ)
r1 − r2
R4

cn

(√
b(r1 − r3)

12a
p,R2

)
× dn

(√
b(r1 − r3)

12a
p,R2

)

×

√√√√1 −R2 sin2

[
sn

(√
b(r1 − r3)

12a
p,R2

)]

+ α(1 − γ)

(
r2 −

(
1 −R4

)
(r1 − r2)

R4

)
.

2.3 Solution of (2) using Kudryashov method

In this section, we employ the Kudryashov method (Kudryashov, 2012) and find exact solutions
of the (3+1)-dimensional negative-order KdV equation, model II (2). This method is one of the
most productive approaches for determining closed-form solutions of NPDEs. The first step is to
reduce the NPDE (2) to nonlinear ODE, which we have already done using the Lie symmetries
in the previous section. Thus, we work with the ODE (9). We assume the solution of (9) is of
the form

ζ(p) =
N∑

n=0

AnH
n(p), (13)
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where H(p) satisfies the first-order nonlinear ODE

H ′(p) = H2(p) −H(p). (14)

We note that the solution of (14) is

H(p) =
1

1 + exp p
. (15)

For equation (9), the balancing procedure yields N = 1. Thus, from (13), we have

ζ(p) = A0 + A1H(p). (16)

Now substituting (16) into (9) and using (14), we obtain

H(p)5
(
−24α4A1β + 12α3A2

1β − 24α4A1βγ
4 + 96α4A1βγ

3 − 12α3A2
1βγ

3

−144α4A1βγ
2 + 36α3A2

1βγ
2 + 96α4A1βγ − 36α3A2

1βγ
)

+ H(p)4
(
60α4A1β

−30α3A2
1β + 60α4A1βγ

4 − 240α4A1βγ
3 + 30α3A2

1βγ
3 + 360α4A1βγ

2

−90α3A2
1βγ

2 − 240α4A1βγ + 90α3A2
1βγ

)
+ H(p)

(
−α4A1β + α2A1 − αA1β

−αA1 − α4A1βγ
4 + 4α4A1βγ

3 − 6α4A1βγ
2 + α2A1γ

2 − αA1βγ
2 − αA1γ

2

+4α4A1βγ − 2α2A1γ + 2αA1βγ + 2αA1γ
)

+ H(p)3
(
−50α4A1β + 24α3A2

1β

+2α2A1 − 2αA1β − 2αA1 − 50α4A1βγ
4 + 200α4A1βγ

3 − 24α3A2
1βγ

3

−300α4A1βγ
2 + 72α3A2

1βγ
2 + 2α2A1γ

2 − 2αA1βγ
2 − 2αA1γ

2 + 200α4A1βγ

−72α3A2
1βγ − 4α2A1γ + 4αA1βγ + 4αA1γ

)
+ H(p)2

(
15α4A1β − 6α3A2

1β

−3α2A1 + 3αA1β + 3αA1 + 15α4A1βγ
4 − 60α4A1βγ

3 + 6α3A2
1βγ

3

+90α4A1βγ
2 − 18α3A2

1βγ
2 − 3α2A1γ

2 + 3αA1βγ
2 + 3αA1γ

2 − 60α4A1βγ

+18α3A2
1βγ + 6α2A1γ − 6αA1βγ − 6αA1γ

)
= 0.

Splitting on the powers of H(p), yields the following algebraic equations for the coefficients A0

and A1:

12α3A2
1β − 24α4A1β − 24α4A1βγ

4 + 96α4A1βγ
3 − 12α3A2

1βγ
3

− 144α4A1βγ
2 + 36α3A2

1βγ
2 + 96α4A1βγ − 36α3A2

1βγ = 0,

60α4A1β − 30α3A2
1β + 60α4A1βγ

4 − 240α4A1βγ
3 + 30α3A2

1βγ
3

+ 360α4A1βγ
2 − 90α3A2

1βγ
2 − 240α4A1βγ + 90α3A2

1βγ = 0,

α2A1 − α4A1β − αA1β − αA1 − α4A1βγ
4 + 4α4A1βγ

3 − 6α4A1βγ
2

+ α2A1γ
2 − αA1βγ

2 − αA1γ
2 + 4α4A1βγ − 2α2A1γ + 2αA1βγ + 2αA1γ = 0,

24α3A2
1β − 50α4A1β + 2α2A1 − 2αA1β − 2αA1 − 50α4A1βγ

4 + 200α4A1βγ
3

− 300α4A1βγ
2 + 72α3A2

1βγ
2 + 2α2A1γ

2 − 2αA1βγ
2 − 2αA1γ

2 + 200α4A1βγ

− 72α3A2
1βγ − 4α2A1γ + 4αA1βγ + 4αA1γ − 24α3A2

1βγ
3 = 0,

15α4A1β − 6α3A2
1β − 3α2A1 + 3αA1β + 3αA1 + 15α4A1βγ

4 − 60α4A1βγ
3

+ 6α3A2
1βγ

3 + 90α4A1βγ
2 − 18α3A2

1βγ
2 − 3α2A1γ

2 + 3αA1βγ
2 + 3αA1γ

2

− 60α4A1βγ + 18α3A2
1βγ + 6α2A1γ − 6αA1βγ − 6αA1γ = 0.

The solution of the above algebraic system, using Mathematica, is

A0 = A0, A1 = 2α (1 − γ) , γ =
α3β −

√
α3β(α− β − 1)

α3β
.
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Thus, the solution of (3) is given by

v(x, y, z, t) = A0 +
A1

1 + exp p
(17)

and consequently using the fact that u = vx, the solution of (2) is obtained by differentiating
(17) with respect to x, which is

u(x, y, z, t) = − α(1 − γ)A1 exp {αβγt + α(1 − γ)x + (β + 1)(γ − 1)y + αβz}
[1 + exp {αβγt + α(1 − γ)x + (β + 1)(γ − 1)y + αβz}]2

.

3 Conservation laws of (2)

In this section, we construct conservation laws for the (3+1)-dimensional negative-order KdV
equation, model II (2). We employ Noether’s theorem.

As seen in Section 2.1, equation (3) consists of nine Lie symmetries given by (4). Since
the variational symmetries are a subset of Lie point symmetries of a given PDE, using the
results in Anco (2017), we conclude that only X1, X3, X4, X5 and X6 are found to be variational
symmetries. It can be verified that a Lagrangian of equation (3) is

L = v2xvt − v2xvz +
1

2

(
vxxvxt − vxxvxz − v2x − vxvy

)
. (18)

Thus, the conserved vectors corresponding to the Noether point symmetries X1, X3, X4, X5 and
X6, using Sarlet (2010)

T k =  Lξk +
(
ηα − uαxjξ

j
)( ∂  L

∂uα
xk

−
k∑

l=1

Dxl

(
∂  L

∂uα
xlxk

))
+

n∑
l=k

(
ζαl − uαxlxjξ

j
) ∂  L

∂uα
xkxl

are given by, respectively

T x
1 =F 1(t + z)

(
1

2
uyuz + 2u

∫
uy dx

∫
(uz − ut) dx + u

∫
uy dx +

1

4
ux

∫
uyz dx

+
3

4
uxt

∫
uy dx− 1

4
ux

∫
uyt dx− 1

2
utuy −

3

4
uxz

∫
uy dx +

1

2

(∫
uy dx

)2
)
,

T y
1 =F 1(t + z)

(
u2
∫

ut dx− u2
∫

uz dx− 1

2
u2 +

1

2
utux −

1

2
uxuz

)
,

T z
1 =F 1(t + z)

(
u2
∫

uy dx +
1

4
uxuy −

1

4
uxx

∫
uy dx

)
,

T t
1 =F 1(t + z)

(
1

4
uxx

∫
uy dx− u2

∫
uy dx− 1

4
uxuy

)
;

T x
3 =

1

2
F 3
y v + F 3(y, t + z)

(
2u

∫
(ut − uz) dx− u− 3

4
uxt −

1

2

∫
uy dx +

3

4
uxz

)
,

T y
3 = − 1

2
F 3(y, t + z)u,

T z
3 =

1

4
F 3(y, t + z)

(
uxx − 4u2

)
,

T t
3 =F 3(y, t + z)

(
u2 − uxx

4

)
;

T x
4 =F 4(t + z)

(
2u

(∫
ut dx

)2

− 4u

∫
ut dx

∫
uz dx− u

∫
ut dx + 2u

(∫
uz dx

)2

13
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+u

∫
uz dx− 1

2

∫
ut dx

∫
uy dx +

3

4
uxz

∫
ut dx− 1

2
ux

∫
uzt dx

+
3

4
uxt

∫
uz dx− 3

4
uxt

∫
ut dx +

1

4
ux

∫
utt dx− utuz +

1

2
u2t

+
1

2

∫
uy dx

∫
uz dx +

1

4
ux

∫
uzz dx− 3

4
uxz

∫
uz dx +

u2z
2

)
,

T y
4 =

1

2
uF 4(t + z)

(∫
uz dx−

∫
ut dx

)
,

T z
4 =

1

4
F 4(t + z)

(
utux − uxuz − 2u

∫
uy dx− 2u2 + uxx

∫
(ut − uz) dx

)
,

T t
4 =

1

4
F 4(t + z)

(
2u

∫
uy dx + 2u2 − utux − uxx

∫
ut dx + uxuz + uxx

∫
uz dx

)
;

T x
5 =F 5(y, t + z)

(
3

2
uxtu− 3

2
uxzu− 1

2
utux +

1

2
uxuz + 2u2

∫
(uz − ut) dx + u2

)
+ F 5

y

(
2zu

∫
(ut − uz) dx− zu− 3

4
zuxt +

3

4
zuxz −

1

2
z

∫
uy dx− 1

4
ux

)
+

1

2
zF 5

yy

∫
u dx,

T y
5 =F 5(y, t + z)u2 − 1

2
zF 5

y u,

T z
5 =F 5(y, t + z)

(
1

2
u2x + 2u3 − 1

2
uxxu

)
− zF 5

y u
2 +

1

4
zuxxF

5
y ,

T t
5 =F 5(y, t + z)

(
1

2
uxxu− 1

2
u2x − 2u3

)
+ zF 5

y u
2 − 1

4
zuxxF

5
y ;

T x
6 =F 6(t + z)

(
4yu

∫
ut dx + 16yu

∫
ut dx

∫
uz dx− 8yu

(∫
ut dx

)2

− 2xu

∫
ut dx

−3

4
xuxz − 2yu2z +

1

2
uz + 2xu

∫
uz dx− 4yu

∫
uz dx + xu− 3yuxz

∫
ut dx

+2yux

∫
uzt dx− 3yuxt

∫
uz dx + 2y

∫
ut dx

∫
uy dx + 3yuxt

∫
ut dx

−yux

∫
utt dx +

3

4
xuxt + 4yutuz − 2yu2t −

ut
2

− 2y

∫
uy dx

∫
uz dx−

∫
u dx

−yux

∫
uzz dx + 3yuxz

∫
uz dx +

1

2
x

∫
uy dx− 8yu

(∫
uz dx

)2
)
,

T y
6 =F 6(t + z)

(
2yu

∫
ut dx− 2yu

∫
uz dx +

1

2
xu− 1

2

∫
u dx

)
,

T z
6 =F 6(t + z)

(
xu2 + 2yu2 − yutux −

1

4
xuxx + yuxuz +

1

4
ux + yuxx

∫
uz dx

+2yu

∫
uy dx− yuxx

∫
ut dx

)
,

T t
6 =F 6(t + z)

(
yutux − 2yu

∫
uy dx− xu2 − 2yu2 + yuxx

∫
ut dx− yuxuz −

1

4
ux

−yuxx

∫
uz dx +

1

4
xuxx

)
.
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4 Concluding remarks

In this paper, we studied the (3+1)-dimensional negative-order Korteweg-de Vries equation (2).
This equation was one of the higher-dimensional models, which was recently formulated by
using the recursion operator of the Korteweg-de Vries equation. The integral appearing in the
equation was first eliminated to obtain a fourth-order nonlinear partial differential equation.
Lie symmetries were computed for this fourth-order partial differential equation and the process
of symmetry reductions produced a fourth-order nonlinear ordinary differential equation whose
closed-form solutions were then obtained. Furthermore, conserved vectors were derived for the
underlying equation by invoking Noether’s theorem.
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